

Innovation, Science and
Economic Development Canada

Innovation, Sciences et
Développement économique Canada

RSS-287
Issue 4
TDB
Draft

Spectrum Management and Telecommunications

Radio Standards Specification

Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD)

Preface

Radio Standard Specification 287, issue 4, *Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD)*, replaces RSS-287, issue 3, dated April 2024.

Main changes are listed below:

1. removed definitions from section 1 and moved them to a separate definitions section 4
2. removed additional information from section 1 and moved the information to a separate introductions section 2
3. moved certification requirements for Innovation, Science and Economic Development Canada to section 3.2
4. modified the Digital Selective Calling (DSC) closed loop configuration from section 3.5 to include open loop
5. added sections 3.6.1.5 and 3.6.1.6 containing the reference to documents for certifying Maritime Survivor Locator Devices with DSC
6. added section 5.5 for Maritime Survivor Locator Devices requirements
7. grouped all 121.5 MHz and 243 MHz transmitter requirements under section 9.4
8. editorial changes and clarifications, as appropriate.

Inquiries may be submitted by one of the following methods:

1. Online using the [General Inquiry](#) form. In the form, select the Directorate of Regulatory Standards radio button and specify “RSS-287” in the General Inquiry field.
2. By mail to the following address:

Innovation, Science and Economic Development Canada
Engineering, Planning and Standards Branch
Attention: Regulatory Standards Directorate
235 Queen St
Ottawa ON K1A 0H5
Canada

3. By email to consultationradiostandards-consultationnormesradio@ised-isde.gc.ca

Additional information and guidance are available on the Innovation, Science and Economic Development Canada (ISED) webpages [Common Questions and Answers](#) and [General Notices](#).

Comments and suggestions for improving this standard may be submitted online using the [Standard Change Request](#) form, or by mail or email to the above addresses.

All ISED publications related to spectrum and telecommunications are available on the [Spectrum Management and Telecommunications](#) website.

Issued under the authority of the Minister of Industry

Wen Kwan
Director General
Engineering, Planning and Standards Branch

Contents

1.	Scope.....	5
2.	Introduction	5
3.	General requirements	6
3.1	Coming into force	6
3.2	Certification requirements	6
3.3	Licensing requirements	7
3.4	RSS-Gen compliance	7
3.5	Transmitter frequency configurations	7
3.6	References	8
4.	Definitions.....	10
5.	Transport Canada and NSS requirements.....	10
5.1	COSPAS-SARSAT (406 MHz) compliance for EPIRB, ELT, and PLB	10
5.2	Additional COSPAS-SARSAT requirements for EPIRBs and PLBs	10
5.3	EPIRB requirements	11
5.4	PLB requirements	11
5.5	MSLD requirements.....	12
6.	Labelling requirements	12
6.1	General	12
6.2	EPIRB	13
6.3	ELT.....	13
6.4	PLB	13
6.5	MSLD	13
7.	Type designator.....	14
8.	Transmitter frequency and output power stability for all devices operating on 121.5 MHz or 243 MHz frequencies	14
9.	Transmitter and receiver standard specifications	15
9.1	ELT requirements.....	15
9.2	EPIRB and PLB requirements	15
9.3	MSLD requirements.....	15
9.4	EPIRBs, PLBs, and MSLDs transmitters operating on 121.5 MHz and 243 MHz	16
10.	Authorization to perform radiation tests.....	19

1 **1. Scope**

2 This Radio Standard Specification (RSS) document sets out the requirements for certifying
3 the radio transmitter capabilities of:

4 • emergency position indicating radio beacons (EPIRBs), which are carried on ships
5 • emergency locator transmitters (ELTs), which are carried on aircraft
6 • personal locator beacons (PLBs), which are for use by persons
7 • maritime survivor locator devices (MSLDs), which are devices worn on a person
8 while aboard a vessel

9 **2. Introduction**

10 EPIRBs, ELTs, and PLBs may send a distress signal on the 406 MHz dedicated frequency
11 band via satellite systems. These devices are also intended and designed to provide the
12 standardized capabilities necessary to transmit alert and location information via coded
13 messages to be relayed through the COSPAS-SARSAT system to Search and Rescue
14 agencies.

15 MSLDs are intended and designed to provide limited proximity alerting and locating
16 capability. The device will transmit low-power alerting and homing signals to an
17 appropriate directional receiver on board a vessel in the devices' vicinity to facilitate the
18 distressed user's rescue.

19 **Important note:**

20 MSLDs DO NOT comply with Transport Canada (TC) and National Search
21 and Rescue Secretariat (NSS) minimum performance standards
22 governing EPIRBs and PLBs, respectively.

23 MSLDs are NOT considered to be EPIRBs or PLBs by ISED, in agreement
24 with TC and the NSS.

25 MSLDs are NOT intended or designed to provide the standardized
26 capabilities necessary to transmit alerts via satellites.

27 MSLDs, EPIRBs and PLBs with added capabilities, such as AIS and DSC, are to be used on
28 a non-interference basis to the COSPAS-SARSAT satellite system.

29 In an emergency situation, the radio for all types of beacons transmitting on the 406 MHz
30 frequency shall be turned on either:

31 a. automatically, such as a water activated switch in an EPIRB or an inertia switch in
32 an ELT; or
33 b. manually by the user.

34
35 The manufacture, importation, or sale of EPIRBs and PLBs operating only on 121.5 MHz,
36 243 MHz, or only on both of these frequencies is prohibited.

37
38 ELTs shall be certified only if the equipment has, at a minimum, an operating frequency of
39 121.5 MHz or 406 MHz.

40
41 **3. General requirements**

42
43 This section sets out the general requirements and references related to this RSS.

44
45 **3.1 Coming into force**

46
47 This standard will be in force as of the date of its publication on [ISED's website](#).

48
49 However, a transition period of six months from the publication date is provided. During
50 this period, compliance with issue 3 or issue 4 of RSS-287 is accepted. After this period,
51 only applications for the certification of equipment under issue 4 of RSS-287 will be
52 accepted. Furthermore, after this transition period, equipment manufactured, imported,
53 distributed, leased, offered for sale, or sold in Canada shall comply with issue 4 of RSS-
54 287.

55
56 A copy of RSS-287, issue 3, is available upon request by
57 emailing consultationradiostandards-consultationnormesradio@ised-isde.gc.ca.

58
59 **3.2 Certification requirements**

60
61 Equipment covered by this RSS is classified as Category I equipment. Either a technical
62 acceptance certificate (TAC) issued by the Certification and Engineering Bureau of ISED or
63 a certificate issued by a recognized certification body (CB) is required, pursuant to
64 subsection 21(1) of the [Radiocommunication Regulations](#).

65
66 For EPIRBs the acceptance letter issued by TC (see section [5.3.2](#)), confirming that the
67 equipment has met TC requirements, shall be included as part of the certification
68 application sent to the Certification and Engineering Bureau (CEB) or a recognized CB.

69
70 If applicable, ISED or the recognized CB shall evaluate the evaluation results for the
71 homing transmitter.

73 For ELTs, the certification application for an ELT device shall provide, in the test report
74 specified in RSS-Gen, a Declaration of Compliance (DOC) stating that the device meets all
75 the applicable requirements from section 104 of AWM chapter 551 and the applicable
76 CAN-TSO standards for its operating frequencies.

77

78 For PLBs, NSS will provide a recommendation letter to the applicant (see section 5.4.2),
79 confirming that the equipment has met NSS Standards, which shall be included as part of
80 the certification application sent to the CEB or a recognized CB.

81

82 If applicable, ISED or the recognized Certification Body shall review the evaluation results
83 for the homing transmitter.

84

85 **3.3 Licensing requirements**

86

87 Equipment covered by this standard is exempt from licensing requirements pursuant to
88 section 15 of the [Radiocommunication Regulations](#).

89

90 **3.4 RSS-Gen compliance**

91

92 Equipment being certified under this standard shall also comply with the general
93 requirements set out in Radio Standards Specification RSS-Gen, [General Requirements for](#)
94 [Compliance of Radio Apparatus](#). Where contradictions exist between this standard
95 and RSS-Gen, this standard shall take precedence.

96

97 **3.5 Transmitter frequency configurations**

98

99 The equipment shall comply with the following configurations:

100

101 **EPIRB:** 406 MHz primary transmitter with homing frequency on 121.5 MHz and/or
102 243 MHz, and optional AIS locating signal on 161.975 MHz or 162.025 MHz

103

104 **ELT:** Shall transmit on at least one of the following frequencies:
105 • 406 MHz or
106 • homing frequency on 121.5 MHz

107

108 **PLB:** 406 MHz with homing frequency on 121.5 MHz and/or 243 MHz, and optional
109 AIS locating signal on 161.975 MHz or 162.025 MHz

110

111 **MSLD:** Shall transmit on at least one of the following frequencies:
112 • homing frequency on 121.5 MHz
113 • AIS locating signal on 161.975 MHz or 162.025 MHz or
114 • DSC communication, channel 70, on 156.525 MHz

115
116 DSC shall have the capability to transmit either as closed loop or
117 open loop; however, DSC shall transmit as closed loop for at least
118 5 minutes or until an accurate position and time from the
119 integrated electronic position fixing device is included in the
120 signal before it can transmit as open loop.

121
122 **3.6 References**

123 This section specifies documents relevant to the RSS.

126 **3.6.1 Normative publications**

128 Where applicable, the equipment shall comply with the standards listed in this section.
129 These documents can be obtained at the addresses listed in [Annex A](#).

131 **3.6.1.1 ISED documents**

133 CPC-2-3-07, [Obtaining Identities in the Maritime Mobile Service](#)

135 **3.6.1.2 COSPAS/SARSAT documents**

137 C/S T.001, [Specification for COSPAS-SARSAT 406 MHz Distress Beacons](#)
138 C/S T.007, [COSPAS-SARSAT 406 MHz Distress Beacons Type Approval Standard](#)
139 C/S T.018, [Specification for Second Generation COSPAS-SARSAT 406 MHz Distress
140 Beacons](#)
141 C/S S.007, [Handbook on Beacon Regulations Canada](#)
142 C/S G.005, [COSPAS-SARSAT Guidelines on 406 MHz Beacon Coding, Registration and
143 Type Approval](#)

145 The above documents can be obtained from the [COSPAS-SARSAT](#) website.

148 **3.6.1.3 Transport Canada Civil Aviation documents**

150 [Canadian Aviation Regulations](#), Part VI, section 605.38

152 [Airworthiness Manual \(AWM\) Chapter 551, Aircraft Equipment and Installation –](#)
153 [Canadian Aviation Regulations \(CARs\)](#), section 551.104, prescribing the Canadian
154 standards of airworthiness for the design and installation of ELT equipment.

156 [Airworthiness Manual Chapter 537, Standards Appliances and Parts – Canadian](#)
157 [Aviation Regulations \(CARs\)](#)

158

3.6.1.4 Federal Aviation Administration Technical Standard Orders (TSO)

159

160 TSO-C126: 406 MHz Emergency Locator Transmitter (ELT)

161

162 TSO-C126a: 406 MHz Emergency Locator Transmitter (ELT)

163

164 TSO-C126b: 406 MHz Emergency Locator Transmitter (ELT)

165

166 TSO-C126c: 406 MHz Emergency Locator Transmitter (ELT)

167

168 The above documents can be obtained from the [Dynamic Regulatory System](#) website.

169

3.6.1.5 International Telecommunication Union Radiocommunication (ITU-R)

170

171 For devices having DSC capability, the applicant shall provide a statement indicating that
172 the equipment's DSC capability complies with the latest version of ITU-R
173 Recommendation:

174

175 M.493, [Digital selective-calling system for use in the maritime mobile service](#)

176

177 For devices having AIS capability, the applicant shall refer to:

178

179 M.1371-5, [Technical characteristics for an automatic identification system using time
180 division multiple access in the VHF maritime mobile frequency band](#)

181

182 For devices having DSC and AIS capability, the applicant shall refer to:

183

184 M.2135-1, [Technical characteristics of autonomous maritime radio devices operating
185 in the frequency band 156-162.05 MHz](#)

186

3.6.1.6 International Electrotechnical Commission (IEC)

187

188 For devices having DSC capability, the applicant shall refer to the IEC minimum
189 requirements, methods of testing and required test results:

190

191 IEC 63269, [Maritime navigation and radiocommunication equipment and systems –
192 Maritime survivor locating devices \(man overboard devices\) – Minimum requirements,
193 methods of testing and required test results](#)

194

3.6.2 Related documents

195

196 RBR-2, [Technical Requirements for the Operation of Mobile Stations in the Maritime
197 Service](#)

198

199

200

201

202 **4. Definitions**

203

204 **The Automatic Identification System (AIS)** is a maritime navigation safety
205 communication system standardized by the International Telecommunication Union (ITU)
206 and adopted by the International Maritime Organization (IMO).

207

208 AIS automatically provides vessel information (including the vessel's identity, type,
209 position, course, speed, navigation status and other safety-related information) to
210 appropriately equipped shore stations, other ships and aircrafts.

211 In addition, AIS:

212 a. automatically receives such information from similarly fitted ships
213 b. monitors and tracks ships and
214 c. exchanges data with shore-based facilities

215

216 **Digital Selective Calling (DSC)** is a type of synchronous system developed by the ITU
217 Radiocommunication Sector (ITU-R) that is used to establish contact using digital codes
218 with a station or groups of stations by means of radiocommunication. DSC may transmit
219 using either open loop or closed loop:

220 • Open Loop is the capability of transmitting to all ships in the vicinity.
221 • Closed Loop is the capability of transmitting an individual transmission to a
222 predefined ship or for a predefined group of ships in the vicinity.

223

224

225 **5. Transport Canada and NSS requirements**

226

227 This section sets out the TC and NSS requirements that are applicable to radio
228 transmitters subject to this standard.

229

230 **5.1 COSPAS-SARSAT (406 MHz) compliance for EPIRB, ELT, and PLB**

231

232 Tests to show compliance to COSPAS-SARSAT standards for the 406 MHz transmitter shall
233 be carried out by a test facility that has been approved by COSPAS-SARSAT. A list of
234 COSPAS-SARSAT approved test facilities can be obtained from the [COSPAS-SARSAT](#)
235 website.

236

237 **5.2 Additional COSPAS-SARSAT requirements for EPIRBs and PLBs**

238

239 In addition to the requirements in the test report specified in RSS-Gen, the certification
240 application of EPIRB and PLB devices that transmit on the 406.0-406.1 MHz frequencies
241 shall include documentation to show that the equipment is certified by a test facility

242 recognized by one of the COSPAS-SARSAT Partners and that the equipment complies with
243 the requirements in COSPAS-SARSAT Standards [C/ST.001](#) and [C/ST.007](#).

244

245 **5.3 EPIRB requirements**

246

247 This section sets out the requirements for EPIRBs.

248

249 **5.3.1 Battery and reliability tests**

250

251 Battery and reliability tests shall be carried out by a test facility approved by Transport
252 Canada (Marine Safety) or a country that is a signatory to the SOLAS Convention.
253 Addresses of these test facilities can be obtained from Transport Canada (Marine Safety).

254

255 **5.3.2 Verification by Transport Canada**

256

257 EPIRBs require verification from TC that they meet TC's operational requirements before
258 the applicant can submit the equipment to ISED for certification under this RSS. TC
259 requirements can be found in the [Navigation Safety Regulations, 2020](#).

260

261 The test report sent to TC shall contain the following:

262

- 263 a. the signature of the testing and supervising officers
- 264 b. the name of the signing persons
- 265 c. phone and facsimile numbers
- 266 d. the full name and address of the testing facility and
- 267 e. proof that the facility is an approved test facility (see section [5.1](#))

268

269 Proof of compliance submitted to TC (Marine Safety) shall be in the form of documentation
270 issued by a classification society or by a recognized independent testing establishment.
271 See [Annex A](#) for TC (Marine Safety) contact information.

272

273 Inquiries concerning TC's requirements should be directed to Manager, Navigation Safety
274 and Radiocommunications listed in [Annex A](#).

275

276 **5.4 PLB requirements**

277

278 This section sets out the requirements for PLBs.

279

280 **5.4.1 Battery and reliability tests**

281

282 Battery and reliability tests for PLBs shall be carried out by a test facility approved by the
283 National Search and Rescue Secretariat. Addresses of such test facilities are obtainable
284 from this organization.

285

286 **5.4.2 Verification by NSS**

287

288 The applicant shall refer to the National Search and Rescue Secretariat, [406 megahertz](#)
289 [\(MHz\) Personal Locator Beacon](#) performance document, which is amended from time to
290 time. PLB devices require verification from The National Search and Rescue Secretariat
291 and confirmation that it meets requirements in the 406 megahertz (MHz) Personal Locator
292 Beacon performance document before the applicant can submit the equipment to ISED for
293 certification under this RSS.

294

295 The test report sent to NSS shall contain the following:

296

- 297 a. the signature of the testing and supervising officers
- 298 b. the name of the signing persons
- 299 c. phone and facsimile numbers
- 300 d. the full name and address of the testing facility and
- 301 e. proof that the facility is an approved test facility (see section [5.1](#))

302

303 Proof of compliance submitted to NSS shall be in the form of documentation issued by a
304 classification society or by a recognized independent testing establishment. See [Annex A](#)
305 for contact information.

306

307 Inquiries concerning the NSS document should be directed to NSS COSPAS-SARSAT listed
308 in [Annex A](#).

309

310 **5.5 MSLD requirements**

311

312 MSLDs enabled with the DSC protocol shall have a receiver to allow DSC Coast Stations or
313 ships with Class A stations to acknowledge and deactivate the alert.

314

315 **NOTE 1** The Canadian Coast Guard MCTS Coast Stations are an example of a DSC Coast stations.

316

317 **NOTE 2** Class A stations are shipborne equipment, as defined in Annex 2 of M.493 (section
318 [3.6.1.5](#)), which includes all the facilities defined in Annex 1 of M.493 (section [3.6.1.5](#)), and
319 complies with the IMO GMDSS carriage requirements for MF/HF installations and/or VHF
320 installations.

321

322 **6. Labelling requirements**

323

324 This section specifies the labelling requirements that are in addition to those in RSS-Gen.

325

326 **6.1 General**

327

328 Each device shall be labelled with the following:

329

- 330 a. its type designator, as listed in section 7,
- 331 b. for EPIRB, ELT and PLB, its class type, as listed in section 8.

332

333 **6.2 EPIRB**

334

335 Labelling required by TC (Marine Safety) for EPIRBs, as specified in the document IMO
336 Resolution MSC.471(101), may be combined with the labelling requirements in RSS-Gen
337 and section 6.1 into a single label.

338

339 **6.3 ELT**

340

341 Labelling required by TC (Civil Aviation) for ELTs, as specified in the *Airworthiness Manual*,
342 section 551.104, may be combined with the labelling requirements in RSS-Gen and section
343 6.1 into a single label.

344

345 **6.4 PLB**

346

347 Labelling required by The National Search and Rescue Secretariat for PLBs, as specified in
348 the document [406 megahertz \(MHz\) Personal Locator Beacon](#), may be combined with the
349 labelling requirements in RSS-Gen and section 6.1 into a single label.

350

351 **6.5 MSLD**

352

353 The sale packaging and user manual of MSLDs shall clearly indicate the following or
354 equivalent bilingual statement:

355

356 *This radio device is designed to only provide an effective alerting and locating capability in
357 close proximity to a vessel. This radio beacon is NOT an EPIRB.*

358

359 *Cette radiobalise est conçue uniquement dans le but de fournir une fonction d'alerte et de
360 localisation efficace à proximité immédiate d'un navire. Cette radiobalise n'est PAS une
361 RLS.*

362

363 For DSC capable MSLDs :

364

365 *Users should be reasonably familiar on how to properly configure their equipment such as
366 the appropriate input of the up-to-date vessel's MMSI in addition to the proper
367 manipulation of their equipment, especially on how to perform manufacturer specific
368 regular testing to avoid undesired transmissions.*

369

370 *Les utilisateurs devraient être raisonnablement familiers avec la bonne configuration de*
371 *leur équipement, comme l'entrée appropriée du MMSI du navire à jour, en plus de la*
372 *manipulation appropriée de leur équipement, notamment sur la manière d'effectuer des*
373 *tests réguliers spécifiques au fabricant afin d'éviter des transmissions indésirables.*

374

375 **7. Type designator**

376

377 An appropriate type designator shall be appended as a suffix (as shown below) to the
378 certification number or alternatively, the correct suffix/equipment type can be identified
379 while submitting the online application, to indicate the class of the device.

380

381

Table 1 – Type designators

Suffix	Abbreviated Definition
E1	EPIRB, float free
E2	EPIRB, manual activation
E3	EPIRB + AIS, float free
E4	EPIRB + AIS, manual activation
PL	PLB
PL1	PLB + AIS
A	ELT, automatically ejected
AD	ELT, automatic deployable
F	ELT, Fixed
AF	ELT, automatic fixed
AP	ELT, automatic portable
W	ELT, water activated
S	ELT, survival
DT	ELT, Distress Tracking
X	MSLD
X1	MSLD + AIS
X2	MSLD + DSC
X3	MSLD + AIS + DSC

382

383 **8. Transmitter frequency and output power stability for all devices operating** 384 **on 121.5 MHz or 243 MHz frequencies**

385

386 The output power and frequency stability measurements described below shall be carried
387 out just before the end-of-life battery test that is required by TC or NSS. Other tests, such
388 as the out-of-band emissions test, may be carried out at any time.

389

390 The output power and unmodulated carrier frequency shall be measured at the antenna
391 connector and under the conditions specified below. A sufficient stabilization period at
392 each temperature shall be used prior to each frequency measurement:

393

- 394 a. at 10 degree intervals of temperatures between the temperatures listed below and
395 at the manufacturer's rated supply voltage and
- 396 b. at +20°C temperature and ±15% supply voltage variations

397

398 The equipment shall be tested at the following temperature ranges:

400

401 **ELT, EPIRB and PLB:** Class 0: -55°C to +70°C
402 Class 1: -40°C to +55°C
403 Class 2: -20°C to +55°C

404

405 **MSLDs:** -20°C to +55°C

406

407 **9. Transmitter and receiver standard specifications**

408

409 This section specifies the transmitter and receiver standard specifications for the
410 equipment specified in this RSS.

411

412 **9.1 ELT requirements**

413

414 ELTs shall comply with all the requirements in the AWM standard, section 551.104 (see
415 section 3.6.1.3).

416

417 **9.2 EPIRB and PLB requirements**

418

419 The 406 MHz transmitter of EPIRBs and PLBs shall comply with the technical requirements
420 in COSPAS-SARSAT standards listed in section 5.2.

421

422 **9.3 MSLD requirements**

423

424 MSLDs with operating frequencies of 161.975 MHz, 162.025 MHz or 156.525 MHz shall
425 comply with the transmitter specifications requirements of RSS-182, *Maritime Radio*
426 *Equipment Operating in the 156-162.5 MHz Band*, as applicable.

427

428 **9.4 EPIRBs, PLBs, and MSLDs transmitters operating on 121.5 MHz and 243 MHz**

429
430 This section specifies requirements for EPIRBs, PLBs, and MSLDs transmitters operating
431 on 121.5 MHz and 243 MHz.

432
433 **9.4.1 Modulation characteristics**

434 The modulation technique for each carrier shall be as follows:

435
436 a. The type of emission shall be A3X, with periods of voice modulation or no
437 modulation (CW) permitted. During A3X transmissions, the emissions shall have
438 the distinctive characteristic achieved by amplitude modulating the carrier with an
439 audio frequency sweeping upwards or downwards for EPIRBs and upwards for
440 PLBs, over a range of not less than 700 Hz within the band 300 Hz to 1600 Hz, at a
441 sweep repetition rate between 2 and 4 Hz.

442
443 b. The modulation factor for A3X modulation shall be at least 85% and not more than
444 100%; that is, over-modulation is not permitted.

445
446 c. The transmission shall be continuous, except in the case of a homing transmitter
447 when it may be interrupted for up to two seconds during the transmission of the
448 406 MHz burst.

449
450 d. The A3X modulation shall have a clearly defined carrier frequency distinct from the
451 modulation sideband components. For this, at least 30% of the total power emitted
452 during any transmission shall be contained within ± 30 Hz of the carrier frequency in
453 the case of the 121.5 MHz beacon, and within ± 60 Hz of the carrier frequency in the
454 case of the 243.0 MHz beacon. Additionally, if the type of modulation is changed
455 during transmission, the carrier frequency shall not shift by more than ± 30 Hz and
456 ± 60 Hz for the 121.5 MHz and 243.0 MHz transmitters, respectively.

457
458 e. Modulation duty cycle, which is the ratio of the positive modulation duration
459 measured at the half-amplitude points on the modulation signal envelope to the
460 period of the audio modulating frequency, shall be between 33% and 55%.

461
462

463 **9.4.2 Transmitter frequency stability**

464 The carrier frequency shall not depart by more than 0.005% (± 50 ppm) from that measured
465 at 20°C and the rated supply voltage. If the 121.5 MHz and 243 MHz frequencies are
466 derived from the same oscillator circuitry, the frequency stability test may be performed on
467 only one of these frequencies.

468
469

470 **9.4.3 Radiated transmitter power**

471

472 The transmitter shall be modulated by an A3X signal as described in section [9.4.1\(a\)](#). The
473 resolution bandwidth of the spectrum analyzer shall be wide enough to include all
474 significant modulation products. The bandwidth used shall be reported.

475

476 The radiated power of a 121.5 or 243 MHz transmitter is required only in the main beam
477 (i.e. antenna pattern is not required).

478

479 The average output power of EPIRBs and PLBs shall not be less than 50 mW when the
480 transmitter is used as a primary beacon and not less than 25 mW when used as a homing
481 transmitter.

482

483 The peak radiated power of MSLDs shall not be less than 25 mW and shall not exceed 100
484 mW.

485

486 **9.4.4 Transmitter unwanted emissions**

487

488 The transmitter unwanted emissions shall be measured at room temperature and this
489 temperature shall be recorded. The transmitter shall be modulated with an audio sweep
490 signal as described in section [9.4.1\(a\)](#).

491

492 The average power of unwanted emissions in a 300 Hz resolution bandwidth shall be
493 attenuated below the level of the average transmitter power P (dBW) by:

494

- 495 a. at least 25 dB on any frequency removed from the centre of the authorized
496 bandwidth by more than 50%, up to and including 100% of the authorized
497 bandwidth, and
- 498 b. at least 30 dB on any frequency removed from the centre of the authorized
499 bandwidth by more than 100%

501

502 where the authorized bandwidth is set at 25 kHz with the transmit frequency at the centre
503 of this bandwidth.

504

505 **9.4.5 Modulation factor and audio sweep**

506

507 The transmitter shall be modulated with an A3X signal as described in section [9.4.1\(a\)](#) and
508 its output displayed on the oscilloscope.

509

- 510 a. Measure and record the peak and through voltages of the RF envelope of the
511 modulated carrier to determine the modulation factor, which is the ratio of the

512 difference to the sum of the carrier levels at the peaks and troughs of the modulated
513 RF envelope, that is:

514

515

516
$$\text{Modulation factor} = \frac{V_{peak} - V_{trough}}{V_{peak} + V_{trough}}$$

517

518

519 b. Measure and record the direction of the audio sweep.

520

521 c. Measure and record the highest and the lowest audio frequencies of the sweep.

522

523 d. Measure and record the audio sweep repetition rate.

524

525 e. Measure and record the modulation duty cycle (see definition in section 9.4.1(e)).

526

527 f. Modulate the transmitter with voice and CW (carrier wave) if the beacon is equipped
528 with this feature. Provide a diagram of the modulated signal in the time domain,
529 properly labelled to show the duration of each mode (A3X, A3E, N0N) of
530 modulation.

531

532 **9.4.6 Spectrum characteristics**

533

534 The spectrum characteristics described in section 9.4.1(d) are to be measured.

535

536 The transmitter shall be modulated with an A3X signal, as described in sections 9.4.1(a)
537 and 9.4.1(d).

538

539 Set the resolution bandwidth of the spectrum analyzer to 60 Hz for 121.5 MHz transmitters
540 and to 120 Hz for 243 MHz transmitters. If a spectrum analyzer of the correct resolution
541 bandwidth is not available, use a narrower bandwidth and sum the powers over the desired
542 band. Record all measurements.

543

544 If the beacon design is such that the type of modulation is changed during transmission
545 (e.g. from A3E to N0N), describe the test and verify that the carrier frequency shift
546 complies with section 9.4.1(d).

547

548 The average total power in the resolution bandwidth specified in this section shall not be
549 more than 5 dB below the transmitter average power that is measured by a wideband meter
550 (see section 8 or 9.4.3). This indicates that at least 30% of the power resides within the band
551 $f_c \pm 30$ Hz (at 121.5 MHz) and within the band $f_c \pm 60$ Hz (at 243 MHz), where f_c is the carrier
552 frequency.

553

554 **10. Authorization to perform radiation tests**

555
556 Before carrying out any tests at offset frequencies or at distress frequencies in Canada that
557 involve radiation of signal into the air (including any tests not performed in a properly
558 shielded room, whether the antenna is attached to the device or not), prior authorization
559 from the offices/agencies nearest to where radiation testing is to be conducted shall be
560 obtained. The agencies are listed below (see addresses in [Annex A](#) or the nearest
561 office/agency):

562

- 563 • NAV CANADA Area Control Centres (ACC)
- 564 • Canadian Mission Control Centre (CMCC) at CFB Trenton, Ontario (406 MHz devices
565 only)
- 566 • Joint Rescue Coordination Centres (JRCC)

567

568 **Note:** The local NAV CANADA office should be contacted for up-to-date telephone
569 numbers of the above-mentioned personnel/agencies. In informing each party, the
570 testing officer shall provide the following information several days in advance:
571 name, telephone number, date and duration of the test (test time shall be as short
572 as possible), and location of the test site.

573

574 The agencies' written consent to the test shall be submitted to the local ISED office for the
575 purpose of issuing the authorization to use the radio frequency.

576

577 Unless there are valid reasons to use distress frequencies, only offset frequencies may be
578 authorized as follows:

579

- 580 • 121.100 to 121.450 MHz; 121.550 to 121.900 MHz
- 581 • 242.200 to 242.900 MHz; 243.100 to 243.800 MHz
- 582 • 406.000 to 406.99 MHz (in accordance with CMCC authorization and COSPAS-SARSAT
583 technical directives, see C/S T.007)

584

585 Great care shall be taken not to accidentally radiate in the forbidden bands (121.5 MHz
586 ± 50 kHz and 243 MHz ± 100 kHz).

587

588 No activation of operationally coded 406 MHz devices is permitted without prior
589 registration in the appropriate National Beacon Registry.

590
591
592
593

594 **Annex A. Addresses**

595

596 The following addresses are relevant to this document. The addresses, especially
597 telephone and fax numbers, are subject to change without notice:

598

599 Canadian Mission Control Centre (CMCC)
600 P.O. Box 1000, Canadian Forces Base Trenton, 8 Wing
601 Astra ON K0K 3W0
602 Duty Officer Tel: (613) 965-2026/fax: (613) 965-7045
603 Tel: 1-877-406-7671
604 Fax: 1-877-406-3298
605 Email: cbr@sarnet.dnd.ca

606

607 COSPAS/SARSAT Secretariat
608 1250 René-Lévesque Blvd W
609 Suite 4215
610 Montréal QC H3B 4W8
611 Tel: (514) 500-7999
612 Fax: (514) 500-7996
613 Email: mail@406.org
614 Website: <http://406.org>

615

616 International Civil Aviation Organization
617 Document Sales Unit
618 999 University St
619 Montréal QC H3C 5H7
620 Tel: (514) 954-8219
621 Fax: (514) 954-6077
622 Email: icaohq@icao.int
623 Web support: web@icao.int

624

625 International Maritime Organization
626 4 Albert Embankment
627 London, England SE1 7SR
628 United Kingdom
629 Tel: +44 (0) 22 7735 7611
630 Fax: +44 (0) 22 7587 3210

631

632 International Telecommunication Union
633 Publication Sales
634 Place des Nations, CH-1211
635 Geneva 20, Switzerland

636 Tel: +41 22 730 6141 (English)

637 Fax: +41 22 730 5194

638 Email: sales@itu.int

639

640 Public Safety Canada

641 National Search and Rescue Secretariat (NSS)

642 COSPAS-SARSAT section

643 269 Laurier Ave W

644 Ottawa, ON K1A 0P8

645 Tel: 1-800-830-3118 or 613-944-4875

646 Public Inquiries: communications@ps-sp.gc.ca

647

648 Joint Rescue Coordination Centres (JRCCs), East to West:

649

Joint Rescue Coordination Centre Halifax
Canadian Forces Base, Halifax
P.O. Box 99000 Stn Forces
Halifax NS
B3K 2X0
Tel: (902) 427-2104
Fax: (902) 424-2114

Joint Rescue Coordination Centre
Trenton
Canadian Forces Base Trenton, 8 Wing
P.O. Box 1000
Astra ON
K0K 3W0
Tel: (613) 965-3870
Toll Free: (800) 267-7270

Joint Rescue Coordination Centre Victoria
Canadian Forces Base, Esquimalt
P.O. Box 17000 Stn Forces
Victoria BC
V9A 7N2
Tel: (250) 413-8933
Fax: (250) 413-8932

650

651 Transport Canada Civil Aviation

652 Attention: Program Manager

653 Aircraft Design Standards (AARTC/D)

654 330 Sparks St

655 Ottawa ON K1A 0N5

656 Email: TC.AARTCDAircraftDesignStandards-

657 NormesdeconceptiondesaeronefsAARTCD.TC@tc.gc.ca

658

659 Transport Canada (Marine Safety)

660 Place de Ville, 10th Floor

661 330 Sparks Street

662 Ottawa ON K1A 0N5

663 Tel: (613) 991-3134
664 Fax: (613) 993-8196
665 Email: marinesafety-securitemaritime@tc.gc.ca

666
667
668
669 NAV CANADA Area Control Centre (ACC)

670
671 Gander Area Control Centre
672 Tel: 1-888-672-2052
673 Email: tocqxacc@navcanada.ca

674
675 Moncton Area Control Centre
676 Tel: 1-888-672-2051
677 Email: mrccqm@navcanada.ca

678
679 Montréal Area Control Centre
680 Tel: 1-877-533-3281
681 Email: tocmontreal@navcanada.ca

682
683 Toronto Area Control Centre
684 Tel: 1-800-268-4986
685 Email: toctoronto@navcanada.ca

686
687 Winnipeg Area Control Centre
688 Tel: 1-877-672-2994
689 Email: tocywg@navcanada.ca

690
691 Edmonton Area Control Centre
692 Tel: 1-877-672-2934
693 Email: egacctoc@navcanada.ca

694
695 Vancouver Area Control Centre
696 Tel: 1-877-987-8622
697 Email: tocvancouver@navcanada.ca

698
699 Manager, Navigation Safety and Radiocommunications
700 Marine Safety, Transport Canada
701 Tower C, Place de Ville
702 330 Sparks Street, 10th Floor
703 Ottawa ON K1A 0N8
704 Email: TC.NavRadio.TC@Tc.gc.ca